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Nonlinear anomalous ferromagnetic Faraday effect

H. Leblond

(Received 21 November 1994)

Two electromagnetic waves with the same frequencies and different polarizations may propagate to-
gether in a saturated ferrite. We investigate how the simultaneous presence of the two waves affects
their modulation. It is found that their evolution is governed by two independent nonlinear Schrédinger
equations. A phase factor corresponding to a weak interaction is created: it is interpreted as a nonlinear
Faraday effect. Then, for high frequencies, we build a perturbative method adapted to the study of the
nonlinear Faraday effect. The angle of rotation of the polarization is calculated and expressed in terms
of generalized Stokes parameters of the waves. For the linear case, it is well known that the Faraday
effect has the following important property: when the wave is reflected back and passes through the
sample of ferrite in the opposite direction, the Faraday effect rotates the polarization of the reflected
wave in the same way as the incident one; thus the additional rotation angle is added to the first one in-
stead of canceling it. We describe a normal Faraday effect, which has the same property, and an anoma-
lous effect, for which the rotation is canceled in the same conditions. The normal effect is proportional
to the energy density of the incident wave, and the anomalous effect to the difference of intensity be-
tween the two elliptic polarizations. Finally, we discuss ways of making evident these higher-order
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I. INTRODUCTION

The problem of propagation of electromagnetic waves
in ferromagnetic dielectrics is a very complex matter that
has given rise to many studies. The linear study of plane
waves, which can be found, e.g., in [1], uses a simple
model (see below) assuming that the medium is infinite
and neglecting inhomogeneous exchange interaction, an-
isotropy, and damping. This model assumes also that the
medium is immersed in a constant exterior magnetic field
strong enough to magnetize it to saturation.

Corrections to this model may be done to take into ac-
count the neglected factors, in particular the damping.
Also, for experiments, the study of propagation in a
waveguide instead of an infinite medium is important [2].
Our aim is not to refine the model in such a way, but to
study nonlinear effects on the simple model.

At a given frequency, two plane waves may propagate
in a magnetized ferromagnetic dielectric. Both have el-
liptic polarizations (circular if the exterior field is parallel
to the propagation direction), completely defined by the
medium, the exterior field, and the wave vector. In previ-
ous papers [3,4], we have studied the nonlinear evolution
of one of these plane waves, assumed to propagate alone,
and have shown that it obeys the nonlinear Schrodinger
(NLS) equation. This led to the characterization of a
Benjamin-Feir-type instability: in the particular case of
propagation parallel to the exterior field, the stability of
the wave depends only on its polarization.

But in usual experiments, an incident monochromatic
wave entering a sample of ferrite would rather be linearly
polarized. It breaks up inside the medium into the sum
of two waves with different circular (or elliptic) polariza-
tion. In a magnetized ferrite, these two polarizations
propagate with different phase velocities; thus after some
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time a phase shift appears between the two polarizations.
At the exit of the sample, the two elliptic polarizations
recombine and the wave is again linearly polarized. Be-
cause of the phase shift, the direction of the linear polar-
ization has rotated for a certain angle. This phenomenon
is well known as the Faraday effect [2,5].

An important particularlity of this effect is the follow-
ing: if the wave is reflected back and passes through the
same sample in the opposite direction, the polarization
rotates again. But this second rotation adds to the first
one instead of canceling it and the polarization of the
outgoing reflected wave is not parallel to the polarization
of the incoming incident wave.

As written before, the effects of nonlinearity on the
propagation of a single wave have been studied. Are the
corresponding results still valid if the two polarizations
propagate together? In order to answer this question, we
first look at the nonlinear interaction between the two
waves of the same frequency and different polarization
that may propagate in a saturated ferrite at the same
time, space, and amplitude scales as to obtain the NLS
equation. We will see that the NLS equation is still valid
and find a leading term of nonlinear Faraday rotation,
proportional to the amplitude of the wave.

Although the preceding calculus makes evident the ex-
istence of a nonlinear contribution to the Faraday effect,
it is not appropriate for the computation of the corre-
sponding rotation angle. Thus we build a perturbative
scheme appropriate for the study of the nonlinear fer-
romagnetic Faraday effect. Using this method we can
compute an explicit expression for the angle of rotation
of the polarization. The previous leading term is found
again and stated precisely; it has the same behavior as the
linear term when the wave is reflected back and is there-
fore called “normal.” An additional term is found that is
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anomalous in the following sense: when the wave is
reflected back, it does not have the same property as the
linear Faraday rotation, but cancels the corresponding
term in the rotation of the incident wave. This term is
proportional to the generalized Stokes parameter s; of
the wave.

The reader will note that we study here a nonresonant
interaction between two waves instead of considering a
resonant interaction, as it is usually the case. A resonant
interaction leads for three waves to the three-wave reso-
nant interaction, completely integrable system [6], for
which there exists an analog with two waves. This is not
expected here.

On the other hand, a more complete description of the
nonresonant interaction of these two waves could be done
either by studying the evolution of terms of higher order
in the calculus involved here in Sec. II or by using a
stretching that corresponds to an incident wave of higher
power. Such a study is not the purpose of this paper.

II. THE APPROXIMATION LEADING
TO THE NLS EQUATION:
THE NORMAL NONLINEAR FARADAY EFFECT

A. Model and perturbation method

We consider a ferromagnetic dielectric and assume
that the electric part of the Maxwell equations in this
medium is linear, so that the magnetization density M
and the magnetic field H verify

—V(V-ﬁ)+Aﬁ=—’;§t—2(ﬁ+ﬁ) M
C

where c=1/\/ao is the speed of light based on the
dielectric constant & of the medium. Neglecting damp-
ing, the time evolution of M is given by the torque equa-
tion
OM _ _ siixH @)
ot
where & is the _gyromagnetic ratio. In this formula, the
magnetic field H could be replaced by an effective field to
take account of the anisotropy and the inhomogeneous
exchange interaction, but we will not do that here (for
more details and a justification of this approximation see
[3,4].
Rescaling M, H, and ¢ into (8u,/c)M, (8uy/c)H, and
ct, Egs. (1) and (2) become

2 — —
—V(V-H)+AH=a—atz—(H+M) , (1)
M _ _ hixH . @)

ot

In order to describe the interaction between two waves
propagating in the same direction, with pulsations »; and
®, and wave numbers k,; and k,, respectively, we intro-
duce the phases

p;=kjx—o;t (j=1,2) 3)

and expand the vector M in the form
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with, for n =(n,n,),
ne=n,@ tnp,. 5)

M is expected to be real, thus A_'i_,, =1V4,;* for each n €72
(an asterisk denotes complex conjugate), and the M,, vary
slowly with respect to the phases @;.

Two waves of the same frequency and different polar-
izations may propagate in the ferromagnet. These are the
two waves under consideration; in other words, we take
0 =w,=w and k,#k,. The ratio k, /k, is generally ir-
rational. We assume that that is the case and thus all the
functions e ™'? will be linearly independent. This assump-
tion means that there is no couple of harmonics M eine
and M ™" nn', that will resonate together: we are
cons1der1ng here a nonresonant interaction.

Let us now expand each ﬂ,, in powers series of a small
parameter g,

M,=M?+eM!+e*M2>+ - - . (6)

We restrict ourselves to one space dimension and assume
that each quantity M is a function of the three stretched
coordinates &, T, and 7 defined by

j_ze_a_ §:8x

ax 3E’

3 3 3 (7
—=eo-+el—, T=et, 7=¢%.

ot oT or’

This two-time-scale expansion is the same as the usual
one that leads to the NLS equation (see [7], Sec. 8.1). The
latter reads

E=e(x—Vt), T=¢k (8)

and if we assume for the moment that we are looking
simply for a single wave, the second condition obtained
through the perturbation calculus (the first one is the
dispersion relation) is that ¥ must be the group velocity
Vs of the wave. Using the form (7) instead of (8) to
define the stretched coordinates, this condition takes the
form

og _
aé

where g is the unknown function proportional to the am-
plitude of the wave under consideration. Solving (9), one
finds that g is allowed to be a function of the variables &
and 7 defined by (8) only. Thus (7) defines really the same
approximation as in [3,4]. To study a two-wave interac-
tion, it is necessary to use the form (7) because two
different group velocities will be found. An analogous ex-
pans1on is made for H.

HY 0,0 and M) 0,0 represent the exterior constant field and
the corresponding magnetization (all effects due to the
finite size of the sample are neglected) We assume that
HY=M.=0 for n#(0,0). H\, M}, and H},,M},
represent the amplitudes of the two waves under con-
sideration. Others terms of order ! are assumed to be

ag =+ Vgoe =0, 9)
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zero. We will assume that these two amplitudes have
finite, very slowly varying limits p,(7) and p,(7) as
&— — . All other harmonics will be assumed to vanish
as §— — o0, except the ones that cannot have any limit,
for which we will take integration constants equal to
zero. Putting expansions (4), (6), and (7) into the basic
equations (1') and (2’), collecting powers of €, and using
the fact that the e™? are linearly independent, we can
solve the perturbative scheme order by order.

B. Results of perturbative calculus

This perturbative calculus is fruitful but quite long and
some technical difficulties are not relevant for the present
problem. Thus we have chosen to present here only the
results that concern the study of the Faraday effect, leav-
ing proofs and explicit expressions of the coefficients for
further pubhcatlon

At order ¢°, we find that HY 0,0 and M) 0,0 must be paral-
lel. Let

MY =m, H},=am . (10)
We choose the y axis such that

mx
m= |m,
0

and define m and 6 through
m sin@ . (11)

m is the magnetization saturation of the ferromagnetic; it
is the only dimensional parameter left in the problem. 6
is the angle between the propagation direction and the
exterior field and a measures the strongness of the latter.
Together with the pulsation w, these are the parameters
of our problem.

At order ¢!, we find that

ﬁ%,o =g,(§T
M}, =g,(&T, A}, ,
Hy,=g,(&T
My,

m,=m cosf, m,=

1
)T)h 1,0 »

. (12)
R IR

=g,(§, T’T)ﬁitl),l ’

where /& },07 m },0’ 7y (1),1, and ﬁz’(l,,l are constants polariza-
tion vectors and g, and g, unknown functions. We find
also that both (w,k;) and (w, k,) must verify the disper-
sion relation

k2]’
1+a — m,f
(0]
2 2
+ 1—k—2] 1+a 1—k—2’ (1+a)m?
() )
2
2
[1—-—’—‘7 w? . (13)
w

This dispersion relation is of degree 2 in k2 and thus
there are two real positive k solutions for every positive
w, except mV ala+sin?0)<w<m(1+a). We assume

that o lies outside of this interval and we choose the two
corresponding values of k for the wave numbers k, and
k, of the two waves under consideration.
At order €2, for |n| =1, one finds as a solvability condi-
tion
9
aré ™
where V; is the group velocity of the wave (w;,k;).
Equation (14) shows that each g; is a function of the vari-
ables §;=&—V;T and 7 only.

The quantities representing the second-order terms in
the expansion of the fields are eliminated by using the
fact that g is a function of £ y) and 7 only, for each j=1,2,
and that all other quantities vanish at infinity. Finally,
one obtains

agg,—o (j=12), (14)

] d 3?2 —
1A15;81+Bla_§281+clg1|31| +F1g1p1+F%g1p%—0

(15)

. d a?
lAz‘a;gz +Bza—é,282+czgz |32|2+F582P%+F%82P%=0

(16)

where 4;, B, C;, and ij (j,k=1,2) are real, known
constants. We recall that p; and p, are the limits of the
amplitudes of g, and g, as {— — .

Equations giving the evolution of the second order
terms are also obtained. Presumably the terms H? 1,0 and
M3, depend on |g2| and H}, and M3, on |g,|?. The
terms H 5 o and M? 0,0 Tepresent a third wave (a traveling
wave) that propagates with a velocity V|, different from
V, and V,. This third wave interacts with both others,
but only through their second-order terms. As men-
tioned before, the complete description of these features,
as well as the detailed derivation of Egs. (15) and (16) and
the computation of the explicit values of coefficients 4;,
B;, C;, and ij (j,k=1,2), are left for future publication.

C. Nonlinear ferromagnetic Faraday effect
in the NLS approximation

Let us recall that in Egs. (15) and (16), the quantities g,
and g, are functions of (£,,7) and (&,,7) respectively,
where §;=&—V;T, and V; and ¥, are the group veloci-
ties of the two waves and that these functions are propor-
tional to the amplitude of the waves.

For each j, the quantities

j—>'—00

are the amplitudes far away from the region where the
modulation undergoes significant variations. Let

i T 1 2 2( .1
X exp 4, fo [Flpi(r)+F}py(r')]dr

(18)
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Then both Egs. (15) and (16) reduce to the nonlinear
Schrédinger equation
. a ' az ’ No?|2 =
tAqujgj +Bi5§2-gj+cjgj|gj] =0. (19)
1t is known [8] that this equation admits two kinds of
solution, depending on the sign of B;C;. For B;C;>0,
the incident wave is unstable and bunches into solitons
(Benjamin-Feir instability [9]). For B;C; <0 the incident
wave is stable and may be modulated by so-called dark-
solitons solutions. The sign of the product B;C; is obvi-
ously the same as for a single wave and has been exten-
sively studied in [4]. The wave with negative helicity is
always stable since the wave with positive helicity may or
may not be stable depending on the values of a, w, and 6.
For 6=0 it is always unstable.
The term in which we are mainly interested here is the
interaction phase factor

exp

i [ o3rdr (20)
4, oP?

and the corresponding one for the second wave. Note
that if the wave packets are localized, i.e., if pj=0 for
each j, there is, at this approximation, no interaction at
all between the two polarizations. Indeed the exponential
factor in Eq. (18) is 1 and the NLS equation (19) describes
completely both waves. This proves that, for waves van-
ishing at infinity, the results obtained in [3,4] are still val-
id when a second wave is present. For waves that do not
vanish at infinity, these results are only modified by mul-
tiplication of the phase factor (20).

This phase factor depends on the amplitude p;(7) of
the wave as §;— — . If p;(7) is not constant, because
there is no delay in its argument, this seems to represent
a propagation at infinite velocity, which would be un-
physical. This apparent paradox corresponds simply to
the assumptions of our perturbative calculus: p, and p,
are functions of 7 and not of T; this means that they vary
very slowly in such a way that they are approximately
constant during the propagation time of the wave
through the sample of ferromagnet, thus their variation
during this propagation time can be neglected.

Corresponding to the exponential factor in Eq. (18),
there will be a nonlinear term in the Faraday rotation
(the polarization direction is determined by the difference
Y between the phases of both circular polarizations). Let
us distinguish the different components of this phase
difference by

Y=+ vy +dnis - 21

Y, represents the linear Faraday rotation. 1, is the term
coming from the above-mentioned exponential factor

F! F} . 2
Y= 4, 4, fo[Pl(T)] dr
Fi F3 |-
+ | — == 12 I.
4, 4, fo [pa(7))%d T (22)
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For various reasons, in particular because it is difficult to
express Y, as a function of the variable x in the laborato-
ry (however, ¥, will always depend on time), but also be-
cause expressions of coefficients F;‘ (j,k=1,2) are too
complicated, expression (22) is not completely appropri-
ate to compute an expression of the Faraday rotation,
which could be experimentally verified. Furthermore,
the phase of the solutions of NLS equation (19) is not
constant and has a presumably non-negligible effect on
Faraday rotation. This is the term that we have called
Ynis in (21). We will make no attempt to calculate it be-
cause this term depends strongly on the form of each
solution and even in the very particular case of the sim-
plest solitonic solutions for both g} and g}, the calculus
of it is far from being easy.

We have shown that the results obtained for a single
wave are still valid and that a nonlinear Faraday rotation
exists at the time, space, and amplitude for which the
modulations is governed by the NLS equation. The fol-
lowing section is devoted to the computation of the angle
of Faraday rotation through an adapted perturbative ex-
pansion.

III. PERTURBATIVE METHOD
VALID FOR HIGH FREQUENCIES

A. Choice of an adapted perturbative method

Let us denote by u, and u, the phase velocities and by
V, and V, the group velocities of the two waves of
different polarization and the same pulsation w, propaga-
ting in a ferromagnetic dielectric. The time scale at
which the linear Faraday effect occurs is proportional to
the difference u, —u,;. The nonlinear effect will concern
the modulations and the time scale at which it occurs will
rather be proportional to ¥V, —V,. To perform a pertur-
bative expansion that describes the Faraday effect, this
time scale should be very small. Thus it is convenient to
seek a limit where the difference u, —u or ¥V, — ¥V, tends
to zero. It is the case for very strong fields, but the sym-
metry between the two waves is then destroyed. On the
other hand, in the limit of high frequencies, both u, —u,
and ¥, — ¥V, tend to zero and the symmetry is retained.
Then the pulsation of both waves is chosen as

wy= L , (23)
€
where € will be our perturbative parameter (g <<1).

Let us expand in power series of € the solutions kp(w)
and ky(w) of the dispersion relation (13), corresponding
to waves with, respectively, positive and negative helicity.
Deriving and then inverting this power series, one finds
the expansion of the corresponding velocities ¥p and Vy,

Vp=1—cv—ew+0(e*), (24a)
Vy=1—¢cw+ew+0(e*), (24b)

where v and w have the same values as in formulas (30)
and (34) below. We see that ¥y — V) is of order €. Let
us call £ and 7 the slow variables corresponding to the
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space and time scales of the searched phenomenon. Then
the ratio £/7 must be of order €>. But the terms of order
g2 are not zero in the expansion of Vp and Vy, although
they cancel in the difference ¥V, —¥,. Hence a depen-
dence of the complex amplitudes of the waves can be ex-
pected on a time scale T such that £ /T is of order 2.

It remains to find the order of magnitude of §. After
some attempts, the best choice is found to be the follow-
ing: the space and time scales £ and T of this problem
shall correspond to the space and time scales £ and 7 of
the NLS approximation. Thus & will be of order €’ and T
of order €. The ratio &£/T is then of order €2 if p=2. In
summary, we define the slow variables as

E=eXx—Vt), T=¢", r=¢t, (25a)
that is,

8 _ 20 08_ 2,0 40 .53

P 28 eVaé_-!—ea +g3 3 (25b)

The expansion of the fields H and M in the harmonics
of plane waves ' defined by Egs. (3)=(5) is still assumed
to be valid. The quantities M, and H, will be assumed
here to be functions of (£,7,7) and expanded in a power
series of € as in (6). The present computation actually
marries a multiscale expansion analogous to the one in
Sec. IT and an expansion in a powers series of 1/w; of all
quantities involved. Peculiarly, the wave numbers k j
have to be expanded in a power series of € < 1/w;,

k9
kj=—L+k!+ek?+ - . (26)
€
The quantities kjp will be calculated order by order during
the perturbative calculus. We will obtain the same values
as the coefficients of the expansions in power series of € of
the solutions k,(w) and k,(w) of the dispersion relation
(13).

As before, the terms HY 0,0 and M) 0,0 of the expansion of
H and M will be assumed to be constant. The terms
describing the dominant behavior of the amplitude of the
two incoming waves should be a priori of order €2, owing
to their order of magnitude in the NLS approxxmatlon

But if we replace @ by /€ in the expressions of Bl 1 and

m } of Eq. (12) (the expressions are the same as for a sin-

gle wave; see [3,4]), we find that

. mt

Tie—
hy ~m, —i , (27a)

J +1

1 my +.lmt

mi ~¢ +im, (27b)
®
—m,

We use the notation

_J(1,0) for j=1
Li=10,1) for j=2.

One could think that the choice corresponding to the best
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analogy to the NLS approximation is the following: the
magnetlzatlon vector of the jth wave is represented by
M _and the correspondlng field by H? 1 . In fact, we may

redeﬁne B!, m!, and g; so that Bl L and m1 will be mul-

tipled by ; and g; divided by the same quantlty This
change is of no significance for the conclusions in the
NLS approximation and allows us to regresent the mag-
netization vector of the jth wave by M7 ; and the corre-

sponding field by H! 1.- This has the advantage of avoid-

J
ing amplitudes that are too small while keeping a scaling
consistent with the NLS frame.

B. Calculus

We use the stretched coordinates and expansions
defined in the preceding subsection in the basic equations
(rescaled) (1’) and (2’) and solve them order by order.
The calculus does not present any real mathematical
difficulty, but is awfully long and complicated. Its struc-
ture is described in the Appendix.

The first condition we obtain, apart from those that fix
the k[, gives the velocity ¥, ¥=1. A second condition
gives the T dependence of the amplitudes g, and g, of the

two waves. We set
E=E&+vT . (28)
Then
81(&T,7)
(2m2+m?)
=h,(§,T)exp |—ing—/————
20°m,
X(|h|2—pt—p3)T (29a)
gz(é’, T,T)
(2m2+m?)
=h,(§,Tlexp | ting———F——
20°m,
X(|hy|2—pt—phT (29b)

where h, and h, are functions of two variables only
((=E&+vT and 7),m==1 and

v=ﬁ[(4a+1)m3+2(l+a)mtz] (30)
@

is the coefficient of the first nonzero term following V=1
in the expansion of the group velocities in power series of
e« 1/w, This first correction to the propagation veloci-
ty is the same for both waves. For j=1,2, the quantities
p; are defined by

p;= dim lg;l, (31)

as before. At first order in € < 1/w,, wave 1 has a positive
helicity and wave 2 a negative one if we choose n=—1.
We make this choice thereafter.

After a long computation, a third condition gives the
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evolution of g; and g, (or &, and A,) and the T evolution
of the second-order terms f; and f, of the amplitudes of
the fundamental. It reads, for j=1,2,

af; 98 |
68+ 61— 2 + 65— e +6Vg;1g,1?

+6%'g;lg, >+ 6% 'g;p1+ 677803
+é§’|g'fj|gj|2+6f’pfj P1+P2)

3
+ 6 f1gi+ 6]+ 6] =L Yo, @2

7 aT

where 6%, 615, 65, 61V, 6, 601, 602, 61181, 610, 6%,
6’}', and & j are constant coefficients, explicitly known.
There is obviously an analogous equation for the second
wave.

Equation (32) can be separated into two equations, one
of which gives the T evolution of f;, the second giving
the 7 evolution 4;. The latter equation can be solved by
means of changes of variables (see the Appendix). The
result reads as follows: we call a; and a, the respective

phases of 4, and &, and introduce the variables
X=(—wr, Y=({+twr, (33)

where

w=——a—[(8a?+4a+ m?
8w’m,

+2(4a+1)mi(1+a)m2+(1+a)*m}]

(34)

is the correction to the group velocity at this order.
More precisely, in Eq. (33), tw is the third nonzero
coefficient, after 1 and v, in the expansion of the group
velocity in a power series of € < 1 /. Then

h1=al(Y)eial(Y,‘r) , (35)
where a, is an arbitrary real function and

—1
=—|{4 Y)]?—Dp?—Ep?
a; w {4[a,(Y)] pi—Ep3}X

X ’ ’
+B fXO(Y)[aZ(X )2 dX

X
+nCa, (V) [,

+a(Y) . (36)

2Re[u;(X',¥)]dX’

The real constants 4, B, C, D, and E are explicitly known
[see (A17) and [10]]. In a similar way,

iay(X,T)

hy=a,(X)e , (37)

where a, is an arbitrary real function and
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1
= {Alay(X)P—Dp3—Epl}Y

Y 12 ’
+B fYO(X)[al(Y )12 dY

—nCaz(X)fY):(X)ZRe[uZ(X,Y')]dY’

+ad(X) . (38)

The functions X,(Y), X,(Y), a)(¥), Yy(X), ¥Y,(X), and
ad(X) are arbitrary “integration constants.”

C. Calculus of the angle of nonlinear Faraday rotation

1. Generalized Stokes parameters

Let us consider two waves propagating in the same
medium with the same amplitude and different circular
polarizations. Let us call k¥, (k_) the wave number of
the positive (negative) helicity. One can show (see [5], p.
119 and following) that after a propagation on the dis-
tance x, the linear polarization of the sum of the two
waves has rotated for an angle yx, where y=4(k, —k_)
is the angle of Faraday rotation by a unit of length.

If the amplitudes differ, the polarization is elliptic and
is characterized by the Stokes parameters. These param-
eters are usually defined (see [11], p. 30) in relation to the
amplitudes of the two linear polarizations that make up
the wave. We recompute them in relation to the complex
amplitudes 4 and B of both circular polarizations that
make up the wave: if §, (&_) is the wave with positive
(negative) helicity,

0
1
+i

0
1 ei(kxvmt) ,
—i

then the Stokes parameters are

6,=Re |E

ei(kx—(ot) ] , (39a)

6_=Re |E (39b)

so=2(|E |*+|E_|? (40a)
s;=4Re(E E*), (40b)
s,=4Im(E_E*), (40c)
s3=2(|E_|>—|E |} (40d)

One sees that 5; and s, are simply related to the phase
difference between the two waves. By the Faraday effect,
this difference increases by an amount 2yx after a propa-
gation on a distance x. Thus angle y is directly related to
the parameters of the waves that may be determined from
experiment, even if the complete wave is not linearly po-
larized. The two waves under consideration here are cir-
cularly polarized only at the first nonzero order in
€= 1/wy. We will neglect this fact and define the general-
ized Stokes parameters using expressions (40). Note also
that Stokes parameters are usually defined in relation to
the electric field. Since we are studying magnetic waves
here, we will define the generalized Stokes parameters in
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relation to the magnetic field H.
Thus we define the parameters

1

1
X=5[k1*kz]+—2;[arg(gl)—arg(g2)], (41)
so=3+(||H, |25+ | H,|%0) , (42a)
sy=—||H,|l|H,|2gcos(2xx) , (42b)
so=H, | gl H, | 2gsin(2xx) , (42¢)
s3=—+( ||ﬁ1 “iﬂ’_ ”ﬁz ”%ﬁ') . (42d)

Here H  and H , are the complex vectorial amplitudes of
the magnetic field of both waves

H;=eH{;+e’H};+0(%) 43)
and the effective norm || ||, defined by

% lee=22-7* (44)

)
_ mcosf m3
X1=— - 2
2 16wgcosO
mS

B 256wdcos
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is such that ||H iller is the mean value of the norm of the
amplitude of the wave j in a duration large in regard to
the period of the carrier wave but small in regard to the
time scale of the variation of its modulation.

2. Expression of the rotation angle
X breaks up in the following way:

X=X +Xm +Xn1n +ana (45)

X, is the linear part of ¥, X,, is a term that depends only
on arbitrary phase modulations of both waves that propa-
gate with their own group velocities, X, is the angle cor-
responding to the normal nonlinear Faraday effect, and
Xnla is the angle corresponding to anomalous nonlinear
Faraday effect. x;=1(k,—k,) has been calculated up to

order &*,

[a(a—4)cos*0+6ala+1)cos?0+(1+a)?]

75 L 128a*+128a’ +96a”+40a +7)cos®6

+4(1+a)(64a’+48a+24a+5)cos®0sin?0+ 18(1 + a)*(8a? +4a + 1 )cos*Osin*6

+4(1+a)*(4a+1)cos?0sin®0— (1 +a)*sin®9]+ 0

(We recall that wy=w/€.)

The calculus of the nonlinear terms necessitates some
work in order to come back into the laboratory. Using
definitions of all the variables used (25), (28), and (33), we
obtain

X=eXx—V,t), (47a)

Y=eXx—V;t), (47b)
with

V,=V—ev—¢cw, (48a)

V,=V—sev+eiw . (48b)

Then we rescale the coefficients appearing in Egs. (36)
and (38). Furthermore, a, and a, and their limits p, and
p, come from the term of order €! of the field, thus the
corresponding quantities measured in the laboratory are

1
— 1. (46)

@o

quantities measured in the laboratory.

a, is defined apart from an arbitrary function of Y, i.e.,
of x —Vt, and a, is defined apart from an arbitrary func-
tion of X, i.e., of x —¥V,t. These arbitrary functions can
be modified in order to express (as much as possible) the
significant parts of the phases as functions of x only. To
this aim, we use the identities

X 1

2 (x—V,t), (50)
=20 V)

— =<7 — S (x— 1

x—V,t 1 x+ l(x Vit), (51)

and the analog for x —¥;z. We compute or simplify, in
an analogous way, the quadratures involved by Egs. (36)
and (38). So we obtain an adequate expression for the
phases of g, and g, (A38). Finally, we get

@,=ca,, @,=ea,, p1=¢ep;, p1=¢p;, (49) ) (52)
1[arg(g,)—arg(g;y)]=x(x,, + ,
and so on (more detail is given in the Appendix). Thus zlare(e: gle2)] Xom ™ Xatn " Xrla
we obtain expressions for the phases as functions of the where
1
XXm =1 (x—V t)—aJ(x—V,1)], (53)
m 1+cos?0 ., = = = =
an=w—%m[|lH1llﬁfr+||Hz||§ff—2(||H1Hi"‘ilellio)] , (54)
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m? — — = =
Xnla =" 5 P(||H 1% — I Ha %)+ QUIH  llis— 1 H 2|l
0
+R- [ (||
x Jo 1leff
with
P=——1 [3asin‘6+3(1—4a)sin’60+8a],  (562)
16 cos“0
1 .
=———[(7Ta—13)sin*0
Q 64cos26[
+16(1—2a)sin®0+4(6a—1)], (56b)
=Té;[4a(1+a)cos20+(3a2+2a—4)sin29]
. 4
+ (1+a)sin’@ (56¢)

8a(a+sin20)

D. Normal and anomalous ferromagnetic Faraday effects

The xx,, term corresponds to the phase difference be-
tween two wave envelopes of arbitrary shape, each propa-
gating with its own group velocity V', or V,. The corre-
sponding Faraday rotation angle depends completely on
the shape of the phase modulation of both wave packets;
it is a linear effect of these wave modulations. This term
can be easily computed if the phase modulations are pre-
cisely known, which would allow measurements of the
nonlinear terms. It disappears when the input waves are
not modulated in phase.

Using definition (42) of the generalized Stokes parame-
ters and identifying by the subscript oo their values as
§— — o, one can write Xy, and X, in terms of these pa-
rameters

_ m 1+cos?6
an*;—(z)m[so-%o,m] N (57)
— 2
Yoa=—22(Ps; . +0Qs;+R(5;)], (58)
0
where

I1H |2

(sy=— =L
3 xJ0 2 20 /V,(x' —x)+x—Vt

—||H, s +x—V,t |dx' .

20 /¥, (x'—x)

(59)

Although it is not a functional of s; from the mathemati-
cal point of view, {s;) can be interpreted in a certain
sense as a mean value of s5. This justifies our notation.
Xnin is the angle of nonlinear normal Faraday rotation:
if the wave is reflected, the exterior field I?O is seen from

—WE IR
W/V,x"—x)Fx =Vt 1H2 e =20 /V (x'—x)+x—V,t

dx’' } (55)

[

the wave so that 6 becomes 7—6, thus x,,, changes its
sign and the rotation is thus the same as before. Unlike
the latter, X, is not affected by the change of 6 into
m—6 [see formulas (56)]. Thus the corresponding rota-
tion is canceled and not doubled by reflection: that is
why we call this effect “anomalous.”

It is possible to cancel the normal effect while multiply-
ing the anomalous one. If the wave runs through a first
sample of length x, the exterior field H, making an angle
6 with the propagation direction, and then through a
second sample identical to the first one, with an exterior
field of same magnitude, but making an angle m—6 with
the propagation direction, the normal Faraday rotation
will be canceled and the anomalous one be doubled. We
can expect to obtain the same result with an exterior field
varying very slowly in space. Note that the preceding
calculus may be valid only if the length scale of this vari-
ation is very large in regard to the length scale of the
variation of the wave modulation, which must be itself
very large in regard to the wavelength of the carrier.

Observe that Y, is proportional to the parameter s
that measures the energy density of the waves. In the
case of a short pulse, s, ,, =0, thus

m 1+cos?0

=————5;, 60
Xaln w(z) 8 cosO So (60)
while for a plane wave sq ., =s¢, thus
m 1+ cos’6
=—— -5 . 61
Xnln w(z) 8 cosf So (61)

Notice that the angle of normal nonlinear Faraday rota-
tion for a plane wave is opposite that for a short pulse.
Xnie depends on s;, which is the difference between the
energy of both elliptic polarizations. Thus it is zero for a
linear incident polarization and would be nonzero for an
elliptic one.

Xnin and even more X,,, are a priori very small quanti-
ties: they were of order e* and &, respectively, but the
order of magnitude can be increased by different ways.
First Y, is proportional to 1/cosf and the coefficients P
and Q in x,, to 1/cos?, thus as @ approaches /2, they
tend to infinity (note that for 6=/2 the preceding cal-
culus is not valid). Let us give asymptotic values of the
nonlinear rotation angles as 60— /2:

m
(59— 250,00 ) » 62
Anin } SCOSG(SO S0, ) (62)
—2m?
ana = 603 [PSS,oo +QS3] ’ (63)

0
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~2=3 (64a)
16 cos“6
—(1+a)
~— =7 (64b
Q 64 cos?6 )

It is also possible to increase the anomalous nonlinear
rotation by use of a strong exterior field; the preceding
coefficients tends to infinity as a, which measures the
strength of the exterior field H o- Furthermore, the wave
fields H 1 and H » are assumed to be small, but this small-
ness is relative to H,. Thus if ||H0|| takes very large
values, a higher wave power can be used without exiting
from the small amplitude @proxrmatlon Since X, and
Xnia are proportional to ||H,|2g%||H,|[% this is of great
importance. Let us give the asymptotic expressions of
the coefficients involved in expression (59) of x,, for
strong exterior fields:

P~ ——~[3 sin*0—12sin’0+8] , (65a)
16 cos?
a .4 2
~—a[7 6—32sin“60+24], 65b
Q 64 cos20[ s 8 ] (650)
R z—lag(3+coszf)) . (65¢)

The three coefficients P, Q, and R have the same order of
magnitude and thus, for a strong exterior field, the anom-
alous nonlinear Faraday rotation is proportional to the
exterior field.

IV. CONCLUSION

In Sec. II we showed that the evolution of the modula-
tion of the two waves with the same frequency and oppo-
site polarization that may propagate together in a fer-
romagnetic dielectric is described by two independent
NLS equations and that the main behavior of the solu-
tions of these equations is not affected by any interaction
of both waves. An interaction term has been found, de-
pending on the value of the waves at infinity and affecting
only the phase of the waves. This term is a nonlinear
contribution to the Faraday rotation. The phase of the
solution of the NLS equation contributes also to this
effect. Hence we have showed the existence of a non-
linear Faraday effect at the time, space, and amplitude
scales where the propagation is described by the NLS
equation.

However, this calculus does not give a convenient ex-
pression of the nonlinear Faraday effect.

In Sec. III we computed the angle of nonlinear Fara-
day rotation with an adequate perturbation scheme. We
found both normal and anomalous nonlinear Faraday
effects. Both have been expressed in terms of generalized
Stokes parameters of the wave. Then we have discussed
different ways to make evident the various computed
terms, assuming a quasitransverse, or strong, or slowly
space varying, exterior magnetic field.
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APPENDIX

In this appendix we give some precision on the compu-
tation involved in Sec. III of this paper. We shall record
only the structure of the calculus. All other details and
the values of the quantities involved in it can be found in
[10] (see Chap. V, Appendix).

1. Derivation of the equations

The basic system (1’) and (2') has been given in Sec.
I1 A and the perturbative method we use is described in
Sec. IIT A. Let us start with the order by order resolu-
tion.

The first step, at order £~ ! in Eq. (1’) and €° in Eq.
(2'), gives the terms of order 0, which are the same as for
the NLS approx1mat10n, given by (10) and (11) It gives
also the value of k9=k9J=w and shows that M! 1.=0and

Hy Lx=0. All other terms of order 1 are also taken to be
zero except H Ly and H Z, which are left free by the equa-
J

tions of this order.
The second step, order € in Eq. (1) and ¢! in Eq. (2'),
gives the values of k jl,

m
k%:—k;:l’.z_x

with ==1, and the values ofH}}s for j=1,2 and s =y,z.

(A1)

This completes the results at order 1:

ﬁ},o=q},o 4D H01 h01 82> (A2)

N 0 . 0

Rlo=lin|, ho1=|—in (A3)
’ 1 ’ 1

where g, and g, are unknown functions of (§,7,7). As
written above, all other terms are zero at this order. The
polarization vectors A | 1,0 and ho 1 correspond to the two
elllptlc (circular in this first approximation) polarizations.
hl o corresponds to a left-handed or positive polarization
and ho | to a right-handed or negative one, if we choose
n=—1. The equations at this order give also the values
of all the results for the terms of order 2, except H %{s,

s=y,z, and the terms corresponding to n=(0,0) and
=(1,—1) for which the vanishing of many coefficients
necessitates a search of the equations at a higher order.
This structure will repeat at each step of the calculus.
For convenience, we will give the results put together or-
der by order.
Thus at order 2, one obtains

(Ada)
(A4b)

a2 =2

Mio=mio &1 >

722 71 72
Hio=hio f1thio &1 >

where m3 ; and h?, are constant vectors (given in [10]).
f1 is an unknown function of (£, T,7) and its coefficient is
the same as that of g, in (A2). There are analogous for-
mulas for the (0,1) terms: all formulas concerning
(n,,n,) are obtained from those that concern (n,,n,) by
inverting indices 1 and 2 for g;, f;, etc., and replacing 7
by —. For this reason, we will not replace 7 by its value
— 1 before the end of the computation. Other harmonics
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are zero at this order. One obtains the values of k% and
k2 too.
At order 3, one obtains a condition that gives the value

of the velocity V,
V=1. (A5)

The following terms k3 and k3 of the dispersion relation
are obtained too. Furthermore,

(A6a)
(A6b)

=32 3

Mio=miio f1+mio &1
3 __ 11 .2 3
o=hiopithio f1thio 8 -

A third unknown function <p1 must be introduced; its
coefficient is that of f in H? 1,0 and so on. Nonzero har-
monics do appear at this order in the expression of the
magnetic field: their general expression is typically of the
form

M}l’ »Ny = nl nzgllg;2 ’ (A7)
where we have set
g;lj=(g;‘ )Injl

They are obtained for » =(2,0) and (1,1) and their sym-
metrics (by permutation of both waves and by complex
conjugation).

For n=(0,0) and (1,—1), the vanishing of many
coefficients necessitates a search for conditions at a high
order; thus much more terms are involved in the expres-
sions, which increases the size of the algebraic part of the
work. On the other hand, we obtain not only algebraic
equations but also differential equations, which are very
easy to integrate but may present questions about bound-
ary conditions.

At this order 3, there is no particular problem; the only
nonzero one of these terms is

if n; <0 for j=1,2. (A8)

Hi= i"m 12— lgaI® lzJ . (A9)
At order 4, we obtain the terms k{, k3,

M o=m}op+miie fi+mt, g, (A10)

HYo=hjop+hiop+hio fi+hioe, (AlD

(¢, is the unknown function introduced at this order),

and nonzero harmonics M, M?* and H, H* for n= =(0,0), (2,0),
(1,1), (1,—1), (2,1), and the symmetric terms. The solva-
bility condition for n=(1,0) and (0,1) at fifth order gives
the T dependence of g; and g, as

9g, 9g; (2wi+m}) s .,
o VaE T g, Sileif—leite),

(A12a)
98, _ 98, (2m2+m}?)

9% _ . @ml+m}) . aia
aT ' "8E N im, 2,018, 12—(p3+p2)) ,

(A12b)
where v is defined by (30) and p, and p, by (31).
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The solutions of Eqgs. (A12a) and (A12b) are given by
expressions (29a) and (29b). It is convenient to pursue the
calculus in terms of the functions g, and g,, using Egs.
(A12a) and (A12b), and not to replace g; and g, by their
expressions (29a) and (29b) before the equations giving
the 7 dependence of g, and g, have been obtained.

At order 5, one obtains

_ N . s 08
M?,O:‘_’ﬁio’ﬁl"’m?,o‘i’l*‘m?,o f1+m?,o gl"""fg 3

(A13a)
+’_l)%,o¢1+}—1?,o¢’1+’?1‘,0 f1+}_"f,o g1

=

5 71
Hio=hoX;

£ 981
+h? E,l)gl]g1|2+hf§)2)g1|g2|2+h,o 3E

(A13b)
(x, is the unknown function introduced at this order).
One obtains also the following term kj5 of the expansion
of k; and a list of nonzero harmonics: these are found for
n=(0,0), 2 0), (1,1, (1,—1), (2,1), and the symmetric
terms for M and for the same values of », but also (3,0)
and (2,—1) (plus eventually some nonzero solutions of
homogeneous, linear systems that are not completely
determined by equations o of this order) and the symmetric
terms for the harmonics H of the magnetic field.

At this step the calculus has also given the following
partial results for the terms of order 6:

M$ =1 ox +m10¢1+m10<p1+m10f1+m10 8

6(2)

+m 8"g1|g1|2+m1081|gz|2

+m 58 g1(pi+p3)+mTe 3E M8 g Y (A14)
and the harmonics M for n=(2,0), (1,1), (3, 0) 2,1),
(2, —1), and the symmetric terms. Note that Hj 2,1 and

M 5.1 are not completely determined at this step.

At the next step [whlch is in fact the seventh one, at
order €’ in Eq. (1) and €% in Eq. (2')], we write only the
solvability condition for n =(1,0) (j=1) and (0,1) (j =2).
Coefficients of x;, ¥;, ¢;, f;, and 3gp;/d& (j=1,2) cancel
and we obtain Eq. (32).

2. Resolution of the equation governing the phase evolution

The first step of the resolution of Eq. (32) is to replace
g; (j=1,2) by their expressions (29a) and (29b) in terms
of functions A g (j=1,2). We describe the calculus for
j=1; the case j=2 is similar. We see that it is con-
venient to set

& T, )=q,(& T, 1", (A15)
where
Bi=—nC(|h|*—pi—p}) (A16)
with
2m2+m?)
= (A17)
20°m,
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B, is a function of {=&+vT and 7 and is such that

g, =h le'B‘T. It is also convenient to use the coordinates
t=E&+oT, T'=T, 7=71. (A18)
Let
1 oh, (0 24 £(2) 2
¢a:6€hl+6fa_§+61 hllhl’ +€1 h1!h2|
. ) oh,
+ &8 h pi+ E82h pi+ E]T— (A19)
1= 66291 | orlel 24 &Py (p? 4 2
©p =615 T q11h 1>+ 6{*q,(pt+p3)
9g, aQ1
+€{*qrh%+§{ Ei—_'_ ac —— tiBq, |, (A20)
- 9B, . 9B
=, =i (?f&“l‘édl? hy. (A21)
Equation (32) can be written
ol +)+=,T"=0. (A22)

<I>}, and =, depend only on £ and 7, and d>,1, must be
bounded as T’ becomes infinite. Thus

=Z,=0, (A23a)

ol +ol=0. (A23b)
Equation (A23a) is immediately solvable. Let

Y=(—qwTr, T=T1. (A24)

Then we get expression (35) for 4,, where a, and «a, are
(a priori) arbitrary real functions.
Some terms in @} cancel and it is convenient to let

lal

q,=ue ', (A25)

where u, is an a priori an unknown complex function of
(&, T',7). Using the fact that ®! is onstant in regard to
T', (A23b) becomes an ordinary differential equation for
u(T'), which is easily solved by separating the real and
the imaginary part of u;(7T’). One can show that the
only bounded solution of (A23b) is u; constant in regard
to T'. Thus f,; depends on T in the same way as g;. The
only nonzero term remaining in <I>,1, is the nonlinear one,
proportional to a?Re(u ).

The coefficient 6§ of g, in (32) depends on k$, which is
not yet fixed. We determine it by the linear limit of (32),
i.e., we assume in (32) that the derivatives and the square
and cubic terms are negligible. The obtained equation is

6%,=0; (A26)

thus 6§=0, which determines k.
After division of Eq. (A23b) by an adequate factor, we
obtain
aal da ay
nw— ¢ +——+Aa1 +Ba?
(A27)

—Dp?—Ep3+nCa,(u;+ut)=0,
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where A4, B, C, D, and E are real constants, explicitly
known [see (A17) and [10]]. The equation for the second
wave is

da, 0da,
—nw—/— +—+Aa2+Bal

a5

2—Ep?—nCay(u,+u3)=0

a,, a,, and u, are defined similarly to a,, a; and u,, and
a, is a function of the single variable

X=¢{+nwr . (A29)

Equations (A27) and (A28) are solved easily using the
variables X and Y. Then the expressions (36) and (38) of
a, and a, are obtained.

3. Returning to the laboratory frame

At first order in € < 1 /w,, wave 1 has a positive helicity
and wave 2 a negative one if we choose n=—1. We
make this choice thereafter. It is consistent with our
definition (42) of the generalized Stokes parameters. In
preceding subsection, we get expressions (36) and (38) for
the phases a; and a,. The complete phases arg(g;) and
arg(g,) can then be computed using (29a) and (29b). In
order to deduce a convenient expression for the angle x
defined by (41), which measures the polarization direc-
tion, we will express these phases as functions of the labo-
ratory variables. Expressions of X, Y, V|, and V, are
given by (47) and (48). Then each coefficient appearing in
Egs. (36) and (38) is rewritten as

m?
e3wd

A= A, (A30)

where A depends on the angle 6 and the ratio a only.
We write similar expressions for B, D, E, and
m

G (A31)
e’w}

C_

where € depends on 6 only.
We write also

w= (A32)

oo

(@ depends on wg, m, 6, and a). Quantities a,,a,,p;, and
p, are rescaled as in Eq. (49) and, in a similar way, we
define

U,=¢u,, U,=¢%u, . (A33)
Using formulas (47)-(49) and (A30)—(A33) in the expres-
sions (36) and (38) of a; and a,, we obtain their expres-
sions as functions of the quantities measured in the labo-
ratory. Using (A31), (A33), and the definition (25) of the
variable T in the expression (A16) of the phase terms 3,T
and B,T, we obtain such expressions for them. Using
Eqgs. (50) and (51), we want to modify the arbitrary func-
tion of Y, i.e., of x — V¢, involved by expression of «;
and make the similar transformation for the second wave.

However, in Eqgs. (36) and (38) there
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are some  quadratures. Computation of the
quantities f§1‘ y)2Re[u (X', Y)]dX’ and

J ?1( 12 Re[u,(X,Y’)]dY’ necessitates the knowledge of

the 7 dependence of u; and u,, i.e., of f, and f,. An
equation giving this dependence would be found at the
next order of the expansion. To avoid a monstrous cal-
culus, we notice that the sequence g;, f}, @;, ¥;, X;» - - -
(for each j=1,2) seems to be defined and related to the
field in a “recurrent” way. Precisely, we have the follow-
ing features: the coefficient of one function of the se-
quence in the expression of the term of order € of the
field is the same as the coefficient of the preceding func-
tion in the expression of the term of order &” ~1 for each
p = 2. Furthermore, we found that the T dependence of
f1 and f, is the same as the one of g, and g,, respective-
ly. Thus we expect the 7 dependence of f; and f, to be
the same as the one of g, and g,, respectively, and we as-
sume that it is truly the case. Thus we assume u, to be a
function of ¥ and u, of X only, and the corresponding
quadratures become trivial.

a,+BlT=—;l {%@(6%+261Re72, —p—p2)
1 0
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f§0(y,[a2(X')]2dX’ and fgo(x)[al(Y’)]de' are, how-
ever, nontrivial quadratures. We want to express these
terms as integrals from O to x of adequate functions; the
change of variable that leads to such an expression is
easily determined. We find that

[F  lay(X")Pdx’

Xo(Y)
=220 %2 dx'  (A34)
vV, Yo —20/V(x'=x)+x—V,t
for the choice of
Va
Xo(Y)=—(x—V;t), (A35)

Vi

with analogous expressions for the second integral.

Thus the phase a;+B,T of g, can be written (in order
to faciliate the determination of the symmetric expres-
sions for the second wave, we use in following formulas
the parameter  without replacing it by —1)

2

+ 2 Aat+8L [7a2 dx'—Dp— Ep2 ]+a?’(x—V1t), (A36)
[on) X 0 29 /V ((x'—x)+x—V,t
where aY is an arbitrary function of x — V1.
Furthermore, we see that
2
| H,|Pe=4(a%+22,Re 2, )+—2—Zﬂ(1+a) Sc‘:)’sgaf +O(eY) . (A37)
0

Neglecting the terms of order €° in Eq. (A36), we can replace @ +2@,Re #, using (A37) and @3 by %HI? 1|2 in the term

proportional to 1/w3. We obtain
m = —— —
atBT=—x [fg@( 1 H e 15 1% — 152 1%)
0

2
ym?

T AN =D H 1% = 6| H
40)0

1 rx 5
+B— | "||H, |13
B— [,

where, for j=1,2,
||Hj||%c=§_1§ffw “Hj”ér

=4p2+0(c?)

29D /V ((x"—x)+x—V,t

dx' |+0(e®) (+a¥(x—V 1), (A38)

(A39)

and the constants A’, D', and &’ are deduced from A, D, and & using the coefficients that appear in expression (A37).
Analogous expressions are obtained for the second wave. The final result is summarized in Egs. (52)-(56).
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